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FOREWORD

This rel_ort describes the work performed between September 1988 to January 1991 under

Research Grant Numbers NAG-1-685, entitled, "Use of Energy Accountancy and Power Flow

Techniques for Aircraft Noise Transmission" and Grant Number NAG-1- 1077, entided "Mobility

Power Flow Analysis of Flexible Plate Structure Enclosing an Acoustic Cavity". Other progress

reports have been submitted under these research grants which have already been published as

NASA Contract reports. During the phase of this work, a Ph.D. Thesis was completed with the

title, "Vibrational Power Flow in Thick Connected Plates", the Abstract of which will be

published in the Journal of the Acoustical Society of America in the Technical Notes and

Research Briefs section. The work in this thesis was also partially funded by an ONR Fellowship

which paid for the stipend of the graduate student. Two Master's thesis have also been completed

during this period. This report deals with a generalization of the mechanical loading problem and

on the use of the mobility power flow approach to deal with the fluid structure interaction

problem. A case study of the L-shaped plate will be considered. The final part of this report deals

with the coupling both acoustic and structural of multiple coupled plates.

The author would like to acknowledge the graduate students who assisted in the work on

this project, the Department of Ocean Engineering and most importantly the financial support by

the Structural Acoustics Branch of the NASA Langley Research Center.

Submitted by

Principal In.vestigator
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ABSTRACT

:_: This report generalizes the mobility power flow approach, previously applied in the

derivation of expressions for the vibrational power flow between coupled plate substructures

forming an L configuration and subjected to mechanical loading. Using the generalized

expressions, both point and distributed mecl_anical loads on one or both of the plates can be

considered. The generalized approach is extended to deal with acoustic excitation of one of the

plate substructures. In this case the forces (acoustic pressures) acting on the structure are

dependent on the response of the structure because of the scattered pressure component. The

interaction between the plate structure and the acoustic fluid leads to the derivation of a corrected

mode shape for the plates' normal surface velocity and also for the structure mobility functions.

The determination of the scattered pressure components in the expressions for the power flow

represents an additional component in the power flow balance for the source plate and the

receiver plate. This component represents the radiated acoustical power from the plate structure.

For a number of coupled plate substructures, the acoustic pressure generated by one substructure

will interact with the motion of another substructure. That is, in the case of the L-shaped plate,

acoustic interaction exists between the two plates substructures due to the generation of the

acoustic waves by each of the substructures. An approach to deal with this phenomena is

described in this report.



I.INTRODUCTION

Mobility Power Flow (MPF) methods [1-51 have previously been shown to provide an

effective structure analysis tool to deal with the response of one and two dimensional structures

with direct mechanical excitation. Comparison of the MPF results with experimental results on a

one dimensional structure 131, and with numerical (Finite Element Analysis (FEA)) 121 and

statistical (Statistical Energy Analysis (SEA)) [41 results, showed good agreement. Furthermore,

using the MPF method, the exchange of vibrational power between the substructures can be

obtained for different structural wave components [6].

One limitation of past work [I-61 is that, only excitation by direct point forces has been

considered. The interaction with the surrounding acoustic medium has been neglected. In the

case of excitation of an aircraft fuselage, distributed loading on the surface of a panel from

acoustic loading can be as important as the excitation from directly applied forces at defined

locations on the structure. The contribution to the overall behavior of the structure from acoustic

distributed loading would be significant when the influence of the surrounding acoustic medium

is not negligible.

The main objective of this report is to extend the MPF method to distributed excitation.

Two types of loading conditions are considered, a distributed mechanical force load of arbitrary

shape and a distributed load created by an obliquely incidence ac0usticwaves on the surface of

one of the plate substructures. The difference between these two types of distributed loads is that

in the mechanical loading case the applied force is independent of the response of the structure,

while in the case of the excitation from an incident acoustic wave, the loading is dependent on

the response of the structure due to the presence of the scattered acoustic waves. In this latter

type of loading coupled expressions must be developed for the excitation and response. To be

consistent with previous w0rk the structure that willbe considered _n the_an:ilysisis an L-shaped

plate. In the case of acoustics loading, an acoustic wave is assumed incident on one side of one of

the flat plate substructures.

In using the MPF method [1 ], the structure is modeled by a series of coupled substructures

with each substructure analyzed independently. The coupling between the substructures is

defined through the bottndary conditions at the junctions, taking into account the forces and

moments that the substructures exert on each other. Expressions for the input power to a

substructure and for the transferred power between the substructures, are obtained in terms of the

input and junction velocity contributions and the forces and moments that are applied on the

substructures. The junction forces and velocities are described in terms of the substructures'

mobility functions.

With direct force excitation of the structure, the input and transferred power can be written

in terms of the input and transfer structural mobility functions of the subsiructures [2]. These

only depend on the geometry of the specific substructure and on the frequency of excitation. The

solution for the response of the global structure can be presented in a matrix form, which allows

the method to deal with a large number of connected substructures. One advantage Of dividing

the global structure into subsystems is that, if the dependence of the response of the global

structure on one of the subsystems is required, it is not necessary to repeat the whole of the
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analysisfor theglobal structure,butonly for that part that dealswith the modified subsvstem.
Furthermore,theanalysisis efficient to implement if the subsystemelementsare identical, in
whichcasetheindependentresponseof only atypical subsystemis required.

The first section of this report deals with distributed mechanical excitation. In the
following section, theanalysisis extendedto dealwith acousticexcitation. A harmonic plane
acousticwave is assumedto be incidenton onesideof oneof theflat plate substructures.The
excitationwill beconsideredto beon theoutsidesurface,andtheplatebeingexcitedis locatedin
an infinite baffle.This is to avoid theedgeeffects.With acousticexcitation, theeffectsof fluid
loading are included in the analysis.The scatteredpressurewill interfere with the incident
pressurefield andthemodeshapeof thestructurewill beinfluencedby thepresenceof the fluid.
The fluid that will beconsideredhereis air and thereforeapproximationsapplicable for light
fluid loadingcanbeapplied.

The analysisfor acousticexcitation is thenextendedin the following sectionto consider
the interaction of the scatteredacousticwavesfrom different sectionsof the L-shaped plate
structure.Forcoupledstructuralsurfacessurroundedby anacousticmedium,theacousticwaves
generatedby themotionof oneof thesubstructuresurfaceswill interactwith themotion of other
substructures.Thatis, in this case,couplingbetweenthesubstructuralelementsof the structureis
bothstructuralandacoustical.

To investigate the problem of the acoustic interaction between coupled structures, the

acoustic field on the inside surface between the two coupled plates joined in the L-shaped

configuration is considered. The reason for selecting the inside surface and not the outside is to

avoid the sharp edge at the boundary between the two plates. The influence of this sharp edge on

the acoustic field, especially its diffraction characteristics, can be very complex to model. The

influence of the second structural component, is included by replacing with a rigid baffle. Due to

the presence of the second plate, and its influence on the acoustic field, the effective surface area

of the first component is twice the actual surface area. and the motion of the surface of this

component is symmetrical about the edge bounded by the rigid baffle which is in a plane

perpendicular to this surface. The baffle acts as a reflecting, zero velocity, surface. In this ease a

complete solution is sought for both plate substructures from consideration of compatibility of
motion and forces at the junction, including the modification of the acoustic field.

2. DISTRIBUTED MECHANICAL LOADING

The development of power flow and mobility expressions for the distributed force loading,

with arbitrary dependence on the x and y coordinates, is very similar to the work reported

previously for point loading [2,41. The differences are that the presentation of the mobility

functions can be generalized to apply for any loading condition.

Using the configuration and axes definition as shown in figure (1), the modal input

mobility function for the junction, and the transfer mobility function between the junction and

any point on the plate surface, both functions being defined as the response per unit applied

moment for every mode m along the junction, are given by [2,4].
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0 J I k2 _ kl
m =

M2m = M3m = --Tm 2_'[phD') [ tan(k2b) _anh(klb )

Um(Y) J [ sin(k2Y) sinh(klY)M12 (Y) = =

m Tm 2_'[phD*) sin[k2b) sinh(klb)

_2_

where T m is the mode m component of the edge moment, kland k 2 are defined by:

= k 2
2 2k 2 + ; k 2 = kkl x y y

k : mlr/a ; k 2 = (o _ - k 2 (3)

x Y 4 D" x

u m is the modem C0niponent of the piate surface displacement, 0.,,, is the ,node m component of
. _lt III •

the angular displacement at the edge of the plate and D and ph are the plate flexural rigidity and

surface density respectively. In the above equations it is assumed that the two plate substructures

are identical, m and n are respectively the mode numbers for the x and y directions, that is m is

along the junction and n perpendicular to the junction, and a and b are the dimensions of the

plates (figure 1). Note that in equation (2) the transfer mobility is a function of coordinate y. This

is necessary since the load is distributed and defined everywhere along the y direction on the

plate surface.

The above modal mobility expressions are for a plate subsystem with an applied edge

moment. This is one of the configuration subsystems for which mobility expressions are

necessary [2]. The second configuration considered is the one which represents an external

distributed load. The distributed load can be decomposed into its modal components, Fm and F n
as follows:

F(x,y) : F f(x)f(y) (4)
O

- a

F = -- F f(x) sin
m o

& a
o

dx (5)
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b

F - f(y) sin dy

n b b
o

(6)

Fmn = Fm F n (7)

Using this load decomposition, mobility functions for the second plate configuration can

be derived in terms of modal mobilities. The modal mobility for the input distributed load,

Mlm n defined as the ratio of the mode (m,n) component of the transverse velocity of the surface
of the plate, to the (m,n) component of the applied distributed surface load, is given by:

where

d jf 1
mn

mn F 2 ;rOb f - f
mn mn

f = _ _ + (9)

mn 2;I"

and Umn is the mode m,n cornponent of the plate surface displacement. The expression for the

transfer mobility, M 2 lm defined as the ratio of the mode m component of the plate edge angular

velocity, to the mode m component of an applied distributed load on the surface of the plate is

given by;

0 jf (-i) n n F

m 7. n

m F 2phb I nJfm -m n

The evaluation of the above mobility functions is obtained from consideration of the

equations of motion for a plate structure.
=: -.=: ....

The expression for the input and transmitted power are the same as in the case of point

loading [2] except that all the mobility functions are changed to modal expressions:



1

Powe r.
input 2

Real 7° ii4 Fmn Mlmn

re, r%

2

m

M21
m

M 2 * M 3
m m

b

I
O

MI2 {y) dy
m

° . °

P°wertrans - 2 2

m

M2 1 Fm
m

M 2 + M 3
m m

2

Real [M 3 ]
m

(12)

For a point load, the force in this case can be described mathematically by;

F(x,y) = Fo 6(x-x o) 6(y-y o) (13)

and

' elF - F sin sin {14)

mn ab o

where xo and Yo are the x and y coordinatesOf the pointof app!icadon of the load.Ifthe [o_ L _

applied at the center of the plate, (x o = a/2 and Yo : b/2), then-0niy:o_d _a}ues for m ann are

allowed. Substituting equation (14) into equations (i 1) and (12), the results obtained for the input

and transferred power, when the load is in the center of the source plate, are shown in figure (2).

Comparing these results to those obtained in reference [31, the two sets of results are identical.

This verifies the formulation of the power flow expressions in the form shown in equations (11)

and (12). .............

For a uniform distributed load described by:

and

F(x,y) = F o (15;

f(y) = 1.0 (16J
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! 16 F
o

F = (17)
mn 2

(2m + i) (2n + i)

the solution for the input and transferred power is obtained using the same equations (11) and

(12). The results for the power flow are shown in figure (3).

Comparing the results for the power flow obtained for the point load at the center of the

plate with the results obtained for the uniformly distributed load, the following similarities and

differences can be observed. First, the modes excited by the two types of loading are identical.

This is expected since both loading conditions are symmetrical about the center of the source

plate. Second, the general level of the power flow for the distributed load case decreases with

frequency, while that for the point load does not decrease. The reason for this can be

mathematically described by the inverse dependency of the modal components of the distributed

applied load on the mode number (equation (17)). Physically this implies that the high frequency

modal components of the load are suppressed. The results for the distributed load would be

similar to those for excitation by normal incidence acoustic plane waves; if the scattered pressure

component is neglected.

3. EXCITATION BY INCIDENT ACOUSTIC WAVES

3. I. GENERAL APPROACtl

In dealing with distributed excitation from incident acoustic waves, the scattering of the

incident acoustic wave due to the response of the receiving structure must be included in the

analysis [7]. The scattered acoustic field is a function of the response of the structure, and

therefore, the loading on the structure consists of two components; one component is the incident

pressure being blocked by the surface and the second component is the pressure from the
scattered acoustic waves.

The component associated with the blocked incident pressure is independent of the motion

of the structure except for the phase differences between structure response and surface motion.

The component associated with the scattered pressure is a direct function of the motion of the

structure and therefore the loading becomes structure response dependent. In dealing with this

type of distributed loading, some modifications to the basic formulation of the expressions for

the vibrational power input and power flow are required. To demonstrate the differences in the

formulation, the case of a point load, which is not independent of the response velocity, applied

at a point on an arbitrary structure is discussed.

3.2. RESPONSE DEPENDENT POINT LOADING

Consider the configuration shown in figure (4), where the input load F is a function of the

response velocity. The governing equations of motion for this configuration are [ 11;

9



V = F M 1 + F A MI2 (18;

VA = " FAM3 (19)

but

= FAM 2 + F M21 (20)

F = A÷BV (21)

where A and B are two constants. All the other terms in the above expressions have the

same definition as in previous work [ll. Equations (19) and (20) can be used to solve for the

junction force F A in terms of the input load F, and then substitute into equation (18) to solve for

the velocity V. In the case where F is a function of V, the result for V must be substituted back

into the expression for F and then used to solve for F A and V A. Alternatively V and F A are
expressed in terms of the constants A and B and the mobility functions. That is.

and

(I-BM 1 ) -MI2

BM21 M2+M 3

V

F A

A M 1

-A M21
(22)

[ v] : [ [
The input and transmitted power components. Pi and PI respectively, are given by;

(23)

[Pi] fly]= (A * BV) F *

Pt A VA
(24;

In this case a slightly different set of matrix equations are obtained, which can be solved

for the evaluation of the power input and power flow between the subsystems. This result shows

that the same general approach can be used when the external loading on a structural component

is influenced by the response of the structure. The use of this result in the case of acottstic

excitation will be described in the following subsection.

3.3. ACOUSTIC EXCITATION

Consider a structure in the plane (x,y,0), with an acoustic fluid occupying the half-space z

> 0 (figure 5). A plane wave incident on the surface of this structure can be described by:

Pi (x'y'z) = Po e(-jkxc°s0sin#) e(-jkysin0sin#) e(kZc°s#) 125)

The direction of the plane wa,,,e incident on the surface of the structure subtends an angle ¢

to the normal of the plate and an angle 0 to the x-axis direction in the plane of the structure
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surface(figure 5).Theresponseof thestructureto the incidentacousticwavecreatesanacoustic
field which will interactwith the incidentfield,The totalpressureactingon thestructuresurface
is thus modified due to the presenceof the scatteredacousticpressurecomponent.The total

pressure acting on the surface of the structure can be represented by [7]:

p(x,y,z:O) = 2Pi(x,y,z=O) + Ps(X,y,z=O) (2_J

where Pi(x,y,z=0) represents the incident pressure component and Ps(X,y.z=0) represents the

scattered pressure componeni. The factor of 2 in front of the incident pressure component is

introduced to take into account the reflected pressure component which is equal and opposite in

the z direction to the incident pressure component (twice Pi(x,y,z=0) represents the blocked

pressure component).

From equation (26) it can be observed that the scattered pressure component can be dealt

with separate from the incident pressure. If the structure has responses which are associated with

different forces and moments acting on the structure, each of these responses creates a scattered

pressure component. The total scattered pressure would have contributions from these different

components, which can be dealt with separately.

In the case of the L-shaped plate, the scattered pressure from the source plate, the plate

receiving the acoustic wave, has two components, one which can be associated with the acoustic

excitation and another component which can be associated with the edge moment representing

the influence of the attached receiver plate. Each of these components is dealt with separately,

provided the changes in the response of the structure due to the fluid loading are taken into

account. This approach fits directly within the MPF method, since with the MPF the global

structure response is analyzed in terms of the separate responses of the subsystems representing

the global structure. The scattered pressure components of each subsystem is thus separately

determined and then summed to compute the power input to the global structure.

If the structure response mode shape is apriori known, the influence of the fluid loading on

the structure can be directly determined from a solution of the coupled equations of motion [7].

However, this approach is not applicable when the mode function is unknown. An alternative

approach has been suggested by Leppington [8], where solutions for the structural response and

scattered pressure are obtained based on an approximate solution for the case where the scattered

pressure is neglected. The complete solution is given in terms of a correction factor, introduced

to take into account the mattered pressure componentand still satisfy the boundary conditions for

the structure and the acoustic medium. The correction factor is independent of the magnitude of

the applied loading and is mainly controlled by the boundary conditions for the structure and the

type of loading. Once the structural response is known, the scattered pressure is computed, and

used to determine the pressure loading on the surface of the structure and the vibrational power

input to the structure.

For the L-shaped plate, the response, including the correction factor, for each of the two

plate subsystems, one representing a simply supported plate with an incident acoustic wave and

the other representing a simply supported plate with an edge moment will be separately
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determinedfrom which mobility functionscanbeobtained.The total response of the structure

and the scattered pressure components are computed by combining these mobility functions

which already include the influence of the fluid loading (scattered pressure) for the type of

loading considered in the determination of the mobility terms. Similarly for the power flow

components.

3.4.SIMPLY SUPPORTED PLATE

The equation of motion for the transverse displacement of a plate is given by [9]:

D*V4u(x,y) - pou(x,y) : p(x,y,z=O) (27)

where p(x,y,z=0) represents the pressure loading on the plate. This term consists of the incident

pressure component plus the scattered pressure component (equation 26).

Assuming a sinusoidal mode shape in the x direction [21, the direction parallel to the

junction, the displacement u(x,y) can be written in the form,

Substituting this equation into equation (27),

u(y) 2 + u(y) = (29)

%y2 ay 4 P D
P

where the subscript m is dropped from urn(y) for simplicity, kp is the plate wavenumber and p(y)
is defined by

w

ca ]o I, a I

Substituting for p(x.y),

[

[ __

2P
o (-jkysin0sin#)

pi(y) - F 1 e {31)
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where

(-jkacosSsin_)
m_ (-I) m e

F 1 = -- + (32)
a (kcos@sin#) 2 - (m_/a) 2

The scattered pressure component for mode m is a function of the normal surface velocity

and is therefore dependent on the solution for the response of the plate. A coupled solution for

the plate and the scattered pressure is required.

If the scattered pressure component is neglected, the right hand-side of equation (27) has

only one component, given by equation (31) multiplied by a factor of 2. In this case the solution

for the displacement of the plate can be written in the form:

u(y) = Up(y) + uh(Y) (33)

where Up(y) is the particular solution of equation (27), given by:

(-jkysin@sin#)

4Po [I e
u (y) = (34)

P a D [(m_/a) 2 + (ksinOsin#)2] 2 - k 4
P

and uh(Y) is the solution of the homogeneous equation of motion, given by

uh(y) = A cosh(klY) + B sinh(klY) ÷C cos(k2Y) + D sin(k2Y) (35)

where kland k 2 are defined by equation (3).

The coefficients A,B,C and D in equation (35) are selected to satisfy the boundary

conditions along the y direction. In the case 9f the simply supported plate these boundary

conditions are:

82u(y=0) = 0
u (y:0) = 0 ; " 2

ay

¢)2u (y=b)

u(y=b) = 0 ; 2 = 0
8y

(36;
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Solving for A,B,C and D using these boundary conditions yield

A z -

2
u''(O) • u (O)k_
P P

2k 2
P

S =

-k2Up(b ) P ; (0) - Up

2k 2 sinh(klb)
P

C -_-

u''(O)
P

- Up(O)k_

2k 2

P

[ ;' 2]cos hb)-klU (b) _ u'' (b) u 10) u fOlk lP P P
D =

2k 2 sin {k2b)
P

(371

where the double prime indicates a second derivative with respect to y.

To compensate for neglecting the scattered pressure component, a corrective complex

coefficient K I is introduced [81,

ul(Y) = Up(y) + Uhl(Y) + K I Uh2(Y) 138)

where

Uh2 : sin(k2Y) (39)
" -_ 2_-_ ..... i i._2 172_ _ -L _ _ = . _ __

..... : : .... = _ : ....... : = . 2 . :=

The main influence of the scattered pressure comp0nent will be on the contribution from the

solution to the homogenous equation of motion [81, especially near resonance when k 2 = (nTr)_.

This is the reason why the correction factor KI is only applied to the term sin(k2Y). The complex

correction coefficient K I will be close to the value of the coefficient D away from the resonant

frequencies and will deviate from this value at the resonant frequencies where the influence of

the fluid on the velocity mode shape is most significant [8]. If ul(Y) represents the exact solution

for the:respons e of the simply supported plate to the acoustic excitation, then the approximate

result obtained when neglecting the scattered pressure component introduces an error Ue(Y) given

by

Ue(Y) = u(y) - ul(Y ) (40)
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By substituting the above equation into the equation of motion (equation 27), the error

term Ue(Y) must satisfy the equation,

m e + e k 4
-- u e (y) 2 - u

ay2 _y4 p e

Ps(Y)
(y) = (41)

D

In solving equation (41), a set of boundary conditions that apply to Ue(Y) can be derived

from the boundary conditions for u(y). These are given by,

u (y=0 or b) : - ul(y:0 or b) = -(u (0 or b) + KiUh(0 or b)) = 0 (42)e g

and

au2(y=0 or b) _u_(y=0 or b)e

2 2
ay ay

au2g(y:0 or b) aU2h(Y:0 or b) ]+ K I = 0
ay2 _y2

(43)

A solution for Ue(Y) is derived in terms of the Green function G(¢.y) for the plate structure [81

b

Ue(Y) = DI-'--_"I G(_'Y)Ps(_)d_

o

G'(b,y)u''(b) • G'(0,y)u''{0)
e

G'''(b,y)u (b) G'''(O,y)u (0)
e e

+ 2(m_/a)2[G ' (b,y)u (b) G' (0,ylu 10)] t44)
e e

where the primes for the function G represent derivatives with respect to ¢. The function G (/_,y)

is defined by:
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sinh[kl(_-bl ] sinh[klb ] sin[k2C_-b) ] sin[k2b ]

2k 2 k l sinh[klb] 2k 2 k 2 sin[k2b]P P

sinh[klb ] sinh[k l(_-b)] sin[k2b ] sin[k2(_-b, ]

2k 2 k I sinh[klb ] 2k 2 k 2 sin[k2b ]
P P

(45;

which is obtained from the solution to the homogeneous equation of motion.

From the expression for Ue(Y), the coefficient K I is selected such that Ue(Y ) = 0 for all

values of y. Substituting equation (45) into equation (44), and equating Ue(Y) to zero, an

expression is obtained that contains ps(¢), which is still an unknown. However, ps(¢) can be

expressed as a function of the normal displacement of the plate, by using the momentum

equation. Introducing this substitution and after some manipulations which are presented in the

appendix, the following result is obtained for ps(¢)

=

Ps

Jo. 2 2a{ 12ol d, ,,6,
-a_ z

where a I is the fluid loading coefficient, a I = (6a2po)/Dp, P o is the fI_id density, and ,8 is the

spatial Fourier transform variable in the y direction. Ira(#) is deflned in the appendixl From

equations (38), (39), (42), (43), (44) (45) and (46) an expression for the correcting coefficient Ki _

is derived,

I !

I i

K = (47)
I ,ee

2jr2a-J ['am-_--_] ]u2t*I h2(,) I(,)S(,) d, + RES 2
-am

where

-j#b
e - cos(k2b)

s(#) : #2 2 _48)
- k 2
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and

I 2 21[ !REEl: k I + k 2 cos(k2b)u (b) - u (0) (49)P P

2RES 2 : (k + k2) sin(k2b) 150)

Having solved for the response of the simple supported plate a modal mobility function can

be defined by the ratio of the modal velocity response to the input incident pressure. That is,

using the same notation as in previous reports, with the subscript 1 to represent the input

location, the input modal mobility for mode m is given by,

jtouI(Y) j_4F I e(-Jka y)

M I (Y) : : , * j_ [ A'c°shlRIY) + B'sinhlklY)
m P aD

o

C'cos(k2Y) + D'sin(k2Y) ] ÷ J_Kisin(k2Y)
(51)

where

k = 'ksinOsin#
a

(52)

A _

aD k 2
P

2 _ k 2[k2 a]
(53)

B I

2 + k 2 )
2['1 (k2 a

* 2
aD k

P

[
-Jkab

e + cosh(klb)

_: sinh(klb )

(541

C r

-r 1 [
* 2

aD k
P

2 + k2 ]kl a
(55)
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and

aD*k 2 _ sin (k2b)
P

Z = +
a p

(57)

Similarly, a modal, transfer mobility function, defined by the ratio of the edge rotational

velocity per unit incident pressure, can be derived from the above solution for the response. If the

subscript 2 represents the location of the junction, the modal transfer mobiilty f0r mode mis

given by,

j_ _ul{Y=b) _4F 1 k e jkab
a

M21 = _ - . * j_[ A'klsinh(klb) ÷ B°klCOSh(klbJ
m p _y aD

O

- C'k2sin(k2 b) + D'k2cos(k2b) ] +J_Kik2cos(k2b} (58)

The input mobility is a function of both the mode number and the variable y while the

transfer mobility is a function of only the mode number. The reason for the y dependency for the

input mobility is that the excitation is distributed over the surface of the plate structure and thus

this input mobility represents the response per unit incident pressure anywhere on the surface of

the plate structure.

3.5. SIMPLY SUPPORTED PLATE WITH AN EDGE MOMENT

An approach similar to the one used for the plate subsystem discussed in the previous

section is used for this second plate subsystem with different loading conditions. In this case no

incident acoustic waves are considered, that is Pi(x,y,z) = 0. The forces acting on this plate

subsystem are the edge moment and the scattered pressure. The same equation of motion, as

equation (27), applies witli the pressure term on the right hand side only representing the

scattered pressure. Because of the presence of the edge moment, the boundary conditions for the

edge y=b of this plate subsystem are different from those given in equation (36). The boundary

conditions for the edge y=b, are given by,
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a2u (y=b) T
m

u(y=b) = 0 ; 2 = 159)
_y D

P

where T m represents the mode m component of the edge moment [2]. The plate response is

obtained by solving the equation of motion as given by equation (27), with p(x,y,z=0) replaced

by the scattered pressure component. In obtaining a solution to this equation of motion, a first

approximation is obtained by neglecting the scattered pressure, in which case it becomes a

homogeneous equation of motion. The solution that satisfies the boundary conditions is given by,

T [ sin(k2Y) sinh(klY) ]
uh(Y) u(y) = m= (60)

2_'_pD*) • w sin(k2b ) sinh(klb )

To account for the presence of the scattered pressure component, a corrective factor KII is
introduced

Tm[  inh'klYtul(Y) = 24-[pD*) 6J KII sin(k2Y) - 161)
sinh(klb)

u 1(y) represents the exact solution of the equation of motion including the scattered

pressure. The error introduced by the approximation is again given by an equation of the form of

equation (40) where in this case as well Ue(Y) must satisfy equation (41). However, the boundary

conditions that apply to the term Ue(Y ) in this case are different from those given in equation

(42). The boundary conditions are modified to include the influence of the edge moment.

ue(Y=0 or b) = ul(Y=0 or b) = - KilU (0 or b) = 0

aU2ely=0) au21 (y=0)

2 2
ay #y

0u 2 (y=b) au21 (y=b) T
e m

_y2 ay 2 D*

(62)

The solution for Ue(Y) is derived in terms of the Green's function (similar equations to (43)

and (44)). The application of the boundary conditions into equation (43), and setting Ue(Y) = 0 for
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all valuesof y leadsto anequationinvolvingps(y).After somesubstitutionsandmanipulationof
theterms,a correctingfactortermKII isobtainedasfollows,

KII =

2

k2 c°s(k2 b) J I mTr ]2+ t*1
2 2 2_2a a

k I + k 2

mm

_2C_ItI#IsI#Id_

-- a 1 ul (_8) [ (#)s(,eld#
2/r2a a -**

(63)

where

and

sin[k2 (Y-b) ]

Ul(_) = 2 2 (64)

k I + k 2

s nh[kl,y-b']
= (65)

u2(#) I k12 + k22] sinh(klb )

From the solution for the response of the plate subsystem subjected to an edge moment and

including, ire influence of the fluid loading, an input mobility function-i-s obtained for the edge of

the plate. Definingthe edge !nput mobility astt)ero!a!ional ve!oc!ty response per un!t applied
edgemomenL =:=_-= =_ == : :

M2
m

j_ #u(y=b)

T ay
m

= Kiik2cos(k2b) - (66)

2_'[@D* ) tanh (klb)

If the two plates of the L-shaped plate structure are identical then,

M 2 = M 3 (67)
m m

The subscript 3 repi'esents the-connected edge of the t:eceiver plate [21.
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The transfermobility function for the plate surface velocity response per unit applied edge

moment can also be defined from the above analysis,

J [ sinh(klY)
M12 = Kiisin(k2Y) -

m 2_F[pD*) sinh_klb;

('5_.

In this case as well, the input mobility functions are only a function of the mode number m.

However, the transfer mobility is a function of both the variable y and the mode number m, since

it represents a transfer to any point on the surface of the plate.

3.6. INPUT AND TRANSFER POWER EQUATIONS

Having derived the mobility functions, the derivation of the power flow equations follows

in the same way as for the distributed mechanical excitation. The input power is obtained from

both an integral over the spatial variable (y) and a summation over all the modes (m). The modal

summation is an alternative way of performing a spatial integration when the response can be

decomposed into a set of modes.

For the transferred power, this is given by an integral along the length of the junction or

alternatively since this is the direction for which a modal decomposition has been assumed, the

total transferred power is given by a summation over all the modes. Since the transferred power

is dependent on the edge moment which is controlled by the incident acoustic excitation, to

evaluate the edge moment and hence the transferred power an integral still has to be performed

for the y direction, the direction perpendicular to the junction.

The total input power is given by the product of the total pressure acting on the source

plate surface and the plate velocity response integrated over the y direction and summed for all

modes m.

b

a 7__ Real r[ 2Pi (y)* Ps (Y)÷ Ps2(Y)] V[(y)dy (69;
Pinput =--

4 m 1
m=l o

where the two Ps terms represent the scattered pressure components associated one with the

response of the source plate due to the incident sound wave and one due to the application of the

edge moment. V 1 is the surface velocity of the source plate for mode m and is given by,

Vl(Y) = PoMI (y) + TmMI2 (y) (70;
m m
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Eliminating Tm by solving for continuity of motion at the junction edge,

T M 3 -- T M 2 -- -T M 2 + P M 2m m m o 1
m m m m

T
m

Po M21
m

2 M 2
m

(71)

substituting into equation (70),

M21 ]

m

VI(Y) = Po M1 (Y) * 2M 2 MI2 (Y)m m

(72)

Substituting into the power input expressions the values for V l(y) and for the scattered

pressure components the following result is obtained for the input power;

z/1 lb P[ M21].a M1 (y) ÷ m
Pinput = _ Real 2Pi(Y) o 2M 2 M12 (y) dy

m=- o m m m

2 [+ -- Real

o 41T2
Z lMlm M21m

I(_) (#) ÷ Ml2 (_)

2M 2 m
, m

2

dF (731
- z

The last integral of the above equation the variable y has been changed to the variable ,8 which

represents the fourier transfo_ variablew!th respect tO y. Also, this last integral represents the

power flow out of the source plate, as radiated acoustical power from one side of the source

plate.

The transferred power between the two plates is given by the summation for all the mode

contributions for the product between the edge moment and the edge rotational velocity. This can

also be expressed in terms of the modal mobility functions derived above,

=_

!
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a _. p2Ptrans = _ o

m=l

M21
m

2M 2
m

2

Real
M2m ] (74)

3.7.RESULTS

Results for the power input, power transfer and radiated acoustical power are obtained

using the above power flow expressions for the structure shown in figure (1). Acoustic waves are

considered incident on the source plate such that both 0 and # are equal to 45". The results for

the input and transferred power for this angle of incidence are shown in figure (6). Figure (7)

shows the acoustic power radiated by the source plate obtained from the scattered pressure

component. As can be observed from this figure the contribution to the scattered pressure from

motion of the source plate due to the presence of the edge moment is not significant.

To determine the influence of the fluid loading on the power flow, the input and transferred

power are computed when the the fluid loading effects (the scattered pressure and hence the

coefficients K) are neglected. Figures (8) and (9) show a comparison between the two sets of

results. As can be observed from these figures the influence of the fluid loading is not significant,

although some differences are observed mainly near the resonant frequencies and in the trough

between the resonant frequencies. The main influence of the fluid loading is to increase the

damping of the structure due to the acoustic radiation.

For other angles of incidence, 0 = 0, 15, 75 degrees and ¢, = 0, 30 and 60 degrees, power

input and power transfer curves are shown in figures (10), (11) and (12). The number of modes in

the results shown in figure (10) is reduced as compared to the other results mainly because of the

symmetry of the excitation. The even modes are not excited with normal incidence. Apart from

the number of modes that are excited the general shape of the power flow curves are also

influenced by the angles of incidence.

4. ACOUSTIC INTERACTION

The scattered pressure generated by each of the coupled plate subsystems will influence the

response of the other subsysterns. The approach that can be used to consider this interaction is

described in this section. Assuming that the plate insonified by the incident acoustic waves is

considered is surrounded by a rigid baffle. On the opposite side of the excitation, in the cavity

between the two plates, acoustic waves are generated due to the response of the two plates (figure

13) which will influence the response of each of the subsystems. The acoustic field inside this

cavity can be Obtained by considering the Scattered pressures generated by the each of the two

plate subsystems, taking into account the change in the boundary conditions due to the presence

of the second plate.
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If theacousticinteractionbetweentheplatesis considered,thedifferentcomponentsof the
L-shapedplatecanbeconsideredto beequivalentto thethreeset-upsshownin figure (14).The
first set-upconsistsof asimply supportedplatesurroundedby a baffle, with anacousticwave
incidenceon the plate surfaceononeside,andwith asecondbaffle perpendicularto the plate
locatedalong one of the plate edges, the edge that forms the junction with the second plate,

(figure 14(a)). The second set-up is similar to the first set-up except for the presence of the

external incident acoustic wave excitation. In this case the excitation is from an edge moment

(figure 14(b)) The third set-up is similar to the second set-up except for the orientation of the

baffles, (figure 14(c)). Each of these set-ups must be separately considered to obtain the required

set of mobility functions.

To deal with the presence of the baffles, these can be substituted by by equivalent image

plates as shown in figure (15), where it is assumed that the plates' structural characteristics are

identical, that is both plates have the same size, thickness and damping. Since for an incident

acoustic wave on a rigid surface, the reflected wave suffers no change in phase, the amplitude of

motion of the image plate surface is the same as that of the real plate surface. If the origin is

placed at the location of the junction between the real plate and its image, and if u(x,y) represents

the transverse displacement of the plate, where y is the coordinate perpendicular to the baffle,

then,

u (x,-y) = u(x,y) {751

u(x,-y) represents the displacement of the image plate and u(x,y) represents the displacement of

the real plate. The presence of the image plate will modify the scattered pressure component.

Because the interaction between the two plates is limited to one side of the L-shaped plate

configuration, the scattered pressure on either side of the first set-up is not symmetrical. Same

applies for the case of the edge moment excitation (second set-up). For the third set-up, the

arrangement is symmetrical, and therefore the same scattered pressure applies on both sides of

the plate. A condition which can be assumed for this third set-up is that the plate is surrounded

by a rigid baffle. This is not necessary in the development of the solution, free boundary

conditions or other boundary conditions can be assumed as is done in reference [ 10l.

The response of the system shown in figure (15(a)). with all four edges simply supported

and with an acoustic wave obliquely incident on one side of the plate can be obtained from a

solution to the wave equation of motion describing the response of the plate, similar to the

approach used in the previous section. The excitation pressure can in this case as well be written

in the from of equation (25).

p(x,y,z) = 2 Pi(x,y,z) + Psl (x'y'z÷) + Ps2(X'Y'Z ) {76)

where Pi is the incident pressure, including both the external acoustic field and the pressure

created by the second plate, Psi is the scattered pressure component acting on the z+ side and Ps2

the scattered pressure component acting on the z_ side, (figure (I 5(a)).
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The solutionto thewaveequationcan proceed in the same way as in previous section, with

the appropriate changes in the term u(/1) which forms part of the expression for the scattered

pressure. The term is the spatial transform of the response of the plate in the direction

perpendicular to the edge which will be connected to the second plate. For the present case, this

term has two components, since the scattered pressure is considered on both sides of the plate.

However, the two components are not identical since a reflecting baffle perpendicular to the plan

of the plate is located on the one side opposite the excitation. Thus, using equation (A.22),

where

Ps
t

and

Ps (_) f®
t

= j ' -- '. .,,L .2 al . I(fl)u (f)e -jf_ df (77)

D* 2_2a [aJ J __ t

(Y) = Psi(Y) - Ps2(Y) (78)

ut(f) = Ul(fl) + u2(f) (79)

• b

Ul(_) = I u(y) e jfly dy
O

(80)

b

u2(f) = 2 I u(y) cos (fly) dy (81)
O

The solution to the response of the plate is, from this point onwards, identical to that in the

previous section.

For the case in figure (15(b), the plate is subjected to the same form of excitation as the

system in figure (15(a)) with the additional excitation by an edge moment. An incident pressure

on the inside surface of the plate is considered to 'account' for the acoustic field generated by the

other plate when coupled. This pressure will be independent of the response of this plate. For the

scattered pressure components, these are identical to those given by equations (77) and (78).

For the third set-up, the excitation is from the edge moment, and on one side from an

external acoustic pressure representing the acoustic field generated by the other plate when

coupled. The scattered pressure components on both sides of the plate are identical because of

the symmetry in the location of the baffles.

For this system, the expressions for u(_) for both sides of the plate are given by equations

similar to equation (81). Having solved for the response of each of the plate subsystems, mobility

functions can be derived and used in the MPF model in the same way as was done previously.
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The inputandtransferredpowerto the sourceandreceiver plate respectively can be obtained in

the same way as in section (3.6).

5. CONCLUSION

The mobility power flow approach for two coupled plate structures with excitation from

distributed loading, including acoustic excitation and the interaction from the scattered acoustic

pressure has been presented. For a distributed loading which is independent of the motion of the

structure, the mobility power flow approach is relatively straight forward and very much similar

to that of point loading 121.

The extension of the Power Flow Method to excitation conditions other than mechanical

excitation has been demonstrated in this report. The excitation considered here is an incident

acoustic wave. In this ease of acoustic excitation, the response of the structure influences the

incident acoustic field and the problem of the structure response becomes a fluid-structure

interaction problem.

Since most of the work found in the literature on fluid-structure interaction deals with

simply supported plate structures, because of the requirement of an apriori knowledge of the

vibration mode shape, which is not valid in the case of connected plate structures, an

approximate solution based on the work by Leppington [8] has been used here. Although fluid

loading is considered, it is found that light fluid loading does not significantly modify the mode

shape of the vibrating plate structure but that the scattered pressure can be significant.

If the results obtained here for the power input and transferred for the L-shaped plate

acoustic excitation are compared to results for mechanical excitation [6], the following

observation can be made. With uniformly distributed mechanical excitation, the power flow is

similar to that for excitation from normal incidence acoustic waves. For oblique incidence waves

additional modes of vibration are excited same as in the case of point excitation. Compared with

the power flow results for point excitation, the power flow is higher in the case of the mechanical

excitation. For these comparisons the total load on the source plate is kept constant.

Presented in this paper is a MPF analysis of the interaction of the acoustic waves generated

by two coupled plate substructures. The analysis can be extended to other coupled plate

substructures to enclose an acoustic space. While, the influence of the acoustic interaction is not

so significant when dealing with interactions through an open acoustic space, if the acoustic

medium is enclosed by components of the structure, standing waves can be set up within the

acoustic medium resulting in a strong acoustic field, which can interact strongly with the

response of elements of the structure.

As a final note, an important result of this report is that the effects of fluid loading on a

connected plate structure can be integrated into the general Power Flow Method. This enhances

the usefulness of power flow methods in determining the response of plate-like structural

components and their interaction with the surrounding medium.
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Material: Aluminium

Density: 2710 Kg/m _
Elastic Modulus: 72 GN/M 2
Thickness: 0.00635m

Dimensions: a= 1.0m,

b=O.5m,

Loss Factor: 0.01
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Figure I. L-shaped plate slruclure, giving plales' characleristics and orientation of axis.
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Figure 2, Normalized power flow resulls for point load excilation at center of source plate, --: Power input: ---:

power transfer: ..... : power ralio.
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APPENDIX

RELATIONSIIIP BETWEEN SCATTERED PRESSURE

AND NORMAL SURFACE VELOCITY

In deriving the relationship between the scattered pressure and the normal surface velocity,

the following conditions are assumed:

(a) the plate normal displacement has a harmonic time dependency of the form,

u(x,y,t) = u(x,y) e jet (A.I)

(b) the plate is finite and lies in the plane (x,y,z=O), with the acoustic fluid occupying the

half-space z, 0;

by:

(c) the propagation of a plane acoustic wave in three dimensional space can be described

p(x,y,z,t) : Po exp(-JkxX-jkyy-jkzz) e j_t (A.2)

Defining a Fourier transform of u (y) by:

u (_) = u(y) exp(j@y) dy

and the inverse transform by:

(A.3)

u (y) = 2--_- (_)exp(-j_y)d_ {A.4)
-ore

From the momentum equation in the z direction:

ap ] av
+ Po _ = 0 (A.5)

_z z=0

where p is the acoustic pressure, Po the fluid mean density and V the particle velocity in the z

direction. From equation (A.5),

-jkzp s (x,y,z) exp (j_t) = -je@o V (x,y,z)exp(j'.'t) (A.6)

where Ps is the scattered pressure.

At the interface between the plate and the acoustic medium (z=0), the surface normal

velocity is equal to the acoustic particle velocity. Therefore, at the interface,
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_Po

Ps (x,y) = -[---
z

V (x,y)

where kz must satisfy the condition:

(A.7)

k2x + k2y +"k2z = I+] 2 = k2 (A.8)

where k is the acoustic wavenumber, _ is the radian frequency and c the acoustic wave speed.

Let a and p be the plate wavenumbers in the x and y directions respectively. Since the

acoustic wave is generated by the plate motion, the x and y variations of the acoustic field must

follow those of the plate and therefore:

that is,

k = a and k = _ (A.9)
x y

k 2 k 2 2 _2 k 2 k 2= - a - = (A.10)
z p

where kp is the plate bending wavenumber.

Spatial Fourier transforming equation (A.7) in the x and y directions.

=Po

Ps (a,_) = k V (a,p) (A.II)

z

For a finite rectangular plate, simply supported at x = 0 and x = a, the response of the plate
can be described by:

v,y,psin cA
p=l

Fourier transforming this expression for V(x,y),

The scattered pressure component, Ps(X,y), can also be written in the fo_,
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Ps (x,y)

¢Jm

= _ Ps (y)
m

m=l

where

21aw

Ps (y) = a

m o

Fourier transforming in the y direction,

• [ m_'x I

Psc×'yl dx

(A.14)

la
2 Ps(X,_ )Ps (p) = "q-

m o

sin dx (A.15)

Fourier transforming also in the x direction,

Psm(_) =-a--" _ Ps (a._) e -jax da s_n[_ l dx

(A.16)

1

_a
_' Ps (_' _)[ am_____] (-I) m e -jaa - 1

d_ A.17

Combining equation (A. 11), (A. 13) and (A. 17) yields,

p;1

(A.18)

The terms of the summation for which p ,, m represent intramodal coupling which has

been shown to be negligible for light fluid loading provided the modal density of the structure is

low [71.
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Therefore equation (A. 18) can be simplified to:

where

°"o[_12r, mOB) = Im(#) Vm(#) (A.19)

_ m
ImIR)_t" --2 [ i (-i) cos(aa) ] da (A.20)

From equation (A. 19), equation (44) can be derived from the definition of the inverse

transform,

PS (_) : _ PS m
(A.21)

and substituting for Psm(_8),

_,,,,o _ o_oi_1, i,-2/1' ITa Im(#) Vm(_) ej_ d_ (A.22)
m -am

or, since Vm(P) = j_0u(B), where u is the displacement,

2

-
D* 2_2a I-'7-I _**Im (j8) u d_l (A.23)

From the above expressions, the scattered pressure component can :be evaluated.
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